# Clustering Clustering is implemented in two classes, HCA and K-Means. Using classes for clustering simplifies explorative analysis as for example different visualisations can be generated without recalculating the clusters. ## Hierarchical cluster analysis ```{eval-rst} .. autoclass:: autoprot.analysis.clustering.HCA :members: ``` ## K-Means clustering ```{eval-rst} .. autoclass:: autoprot.analysis.clustering.KMeans :members: ```